

Lindab Celo

Zuluftbalken

Anwendung

Lindab hat mit dem Celo einen Zuluftbalken entwickelt, der oberhalb einer Zwischendecke montiert werden kann. Somit können Kühlung und Belüftung einfach oberhalb der abgehängten Decke versteckt werden und Sie erhalten ein einheitliches Bild ohne sichtbare Technik. Das Modell Celo wurde zusammen mit der Firma Ecophon entwickelt, die akustische Decken passend zu unserem System anbieten.

Montage

Das Modell Celo wird oberhalb einer Zwischendecke montiert. Dieses System benötigt Schlitze in der Zwischendecke, um die warme Raumluft aufzunehmen und die gekühlte Luft an den Raum abzugeben.

Wissenswert

Das Modell Celo basiert auf einer einzigartigen, zum Patent angemeldeten Technik, bei der die gekühlte Luft aus dem Balken durch Schlitze in der Zwischendecke entlang der Wand bis zum Boden geleitet wird. Die gekühlte Luft wird fächerförmig abgegeben, was geringe Luftgeschwindigkeiten im Aufenthaltsbereich garantiert.

Lindabs Zuluftbalken sind Eurovent-zertifiziert und gemäß EN-15116 getestet.

Technische Daten

Länge: 1200 - 3600 mm (in 100 mm Schritten)

Breite: 215 mm Höhe: 127 mm Leistung: 1030 W

Berechnungsparameter

Raumtemperatur: 25°C, Wassertemperatur: 14-17°C, Lufttemperatur: 18°C, statischer Düsendruck: 80 Pa,

Luftvolumenstrom: 15 l/s/m.

Celc

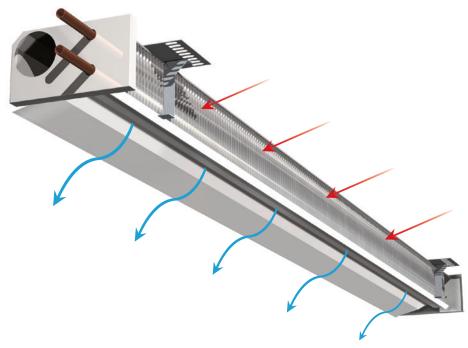


Bild 1: Celo arbeitet nach dem Induktionsprinzip.

Funktion

Zum Patent angemeldete Technologie sorgt für ein perfektes Raumklima.

Das Modell Celo ist ein Zuluftbalken (siehe Bild 1), der oberhalb einer Zwischendecke montiert wird. Celo basiert auf einer einzigartigen Technik, die es ermöglicht, die gekühlte Luft durch Schlitze in der Zwischendecke entlang der Wand bis zum Boden zu leiten (siehe Bild 2). Zusammen mit der fächerförmigen Luftverteilung sorgt diese Technik für geringe Luftgeschwindigkeiten im Aufenthaltsbereich.

Diese Technologie, bei der der Zuluftbalken oberhalb der Decke montiert wird und die Luft langsam entlang der Wand bis zum Boden geleitet wird, garantiert eine hohe Luftwechselrate im Raum.

Konstruktion

Celo ist mit einer vertikalen Kühlbatterie und einem querliegendem Verteilerkanal ausgestattet. Es gibt auf jeder Stirnseite des Balkens einen Luftanschluss, an einem der beiden wird die Zuluft angeschlossen. An dem unbenutzen Anschluss wird eine Reinigungsklappe mit Griff angebracht (Bezeichnung ESUH 80). Die Reinigungsöffnung ermöglicht die Wartung und Reinigung des Verteilerkanals. Das Modell wird mit voreingestellter Luftmenge und Düsendruck geliefert.

Die Luft wird dem Raum durch die entlang des Verteilerkanals angebrachten Coanda-Düsen zugeführt. Die äußeren Düsen haben einen seitlichen Winkel von 30°, dieser Düsenwinkel wird kleiner, je näher die Düsen an der Mitte des Balkens liegen. Durch diese Anordnung wird ein fächerförmiges Verteilungsbild erreicht.

Die Düsen sind zum Einstellen einfach von unten zu erreichen, somit können Düsendruck und Verteilungsbild jederzeit angepasst werden.

Die Wasserleitungen sind aus Kupfer. Trotzdem sollte das Wasser sauerstofffrei sein, um Korrision zu vermeiden.

Bild 2: Celo basiert auf einer einzigartigen Technik, die es ermöglicht, die gekühlte Luft durch Schlitze in der Zwischendecke entlang der Wand bis zum Boden zu leiten.

Celo

Versteckte Montage

Das Modell Celo macht es Ihnen einfach, ein schönes und einheitliches Deckenbild zu gestalten (siehe Bild 3). Celo bietet große Freiheiten beim Entwerfen einer Zwischendecke (siehe Bild 4). Sie haben die Wahl zwischen der versteckten Montage mit Schlitzen in der Decke oder der Montage als hängende Insel.

Zuluftbalken, Abluftdurchlässe, Lüftungskanäle und Elektroinstallationen können alle über der Zwischendecke versteckt werden.

Einfache Montage und Wartung

Die Montage des Celo Zuluftbalken ist einfach. Es ist keine vorsichtige Justierung der Zwischendecke nötig. Wenn der Monteur den Balken installiert hat, übernimmt der Deckeninstallateur und muss nur noch die Decke einpassen.

Da die Platten der Zwischendecke einfach entfernt werden können, sind auch die Zuluftbalken und andere Installationen einfach zur Pflege und Wartung erreichbar. Über der Zwischendecke herrscht ein sauberes Klima. Das haben viele Jahre der Erfahrung mit konventionellen Kühlbalken gezeigt, bei denen die Luft durch Schlitze in der Decke eingesaugt wird und über einen zentral im Raum installierten Zuluftbalken wieder abgegeben wird. Der große Unterschied beim Celo ist, dass der Zuluftbalken nicht sichtbar ist.

Bild 3: Mit Celo erreichen Sie ein schönes, einheitliches Deckenbild.

Bild 4: Celo gibt Ihnen viele Freiheiten bei der Gestaltung der Zwischendecke.

Daten

Varianten

Celo wird oberhalb einer Zwischendecke montiert.

Länge: Celo ist in Längen von 1,2 m bis 3,6 m (in Stufen von 0,3 m lieferbar.).

Breite: Die Breite beträgt 215 mm

Höhe: Die Höhe beträgt 122 mm.

Wasseranschluss: Außendurchmesser Ø12 mm. horizontaler Anschluss.

Luftanschluss: Außendurchmesser Ø80 mm, horizontaler Anschluss.

Düsenwinkel: Der Standarddüsenwinkel beträgt 30°.

Oberflächenbehandlung: Celo wird aus beschichtetem Stahlblech hergestellt.

Luftmengensteuerung: Der Druckverlust des Balkens ist ab Werk eingestellt, weshalb auf eine Einstellung vor Ort verzichtet werden kann. Die Voraussetzung dafür ist, dass der Druckverlust in der Anlage im Vergleich zum Druckverlust im Balken relativ gering ist. Wird trotzdem eine zusätzliche Einstellmöglichkeit gewünscht, kann eine zusätzliche Drosselklappe bei Lindab bestellt werden.

Farbe

Das Produkt wird nicht sichtbar hinter einer Deckenverkleidung montiert.

Sonderausführungen

Ab Werk vormontiert.

Vormontierte Ventile und Stellantriebe:

Ventile mit einstellbaren K,-Wert und verschiedenen Stellantrieben können auf Wunsch ab Werk vormontiert werden. Für die zusätzliche Heizfunktion ist ein separates Ventile mit Stellantrieb erforderlich. Einzelheiten finden Sie unter Zubehör.

Inegrierter Kondensatwächter Regula Secura: Sie haben die Möglichkeit, den Regula Secura Kondensatwächter integriert im Produkt einbauen zu lassen.

Integrierte Anschlussplatine Regula Connect: Sie haben die Möglichkeit, die "Regula Connect" Anschlussplatine im Produkt einbauen zu lassen.

Luftanschluss: Der Balken kann mit einem zusätzlichen, gegenüberliegenden Luftanschlussstutzen geliefert werden.

Airboost: Zusätzliche Düsen und Verschlußmöglichkeiten für vorhandene Düsen bieten zukünftige Flexibilität.

Zubehör

Wird gesondert geliefert.

Regler: Siehe Kapitel: "Regula".

Hängeseile: Aufhängung: Für empfohlene Montagebeispiele siehe: "Celo Installation Instruction").

Folgendes Zubehör ist bei Lindab erhältlich:

- Systemabhänger (verschiedene Ausführungen)
- Gewindestangen M8

Weiteres Zubehör entnehmen Sie bitte dem Dokument "Zubehör" auf www.lindQST.com

Dimensionierung

Kühlleistung der Primärluft (Zuluft) P

- 1. Grundlage ist die gesamte Kühlleistung, welche dem Raum zuzuführen ist. Diese erhalten Sie durch Ihre Kühllastberechnung.
- 2. Berechnen Sie nun die Kühlleistung P., die über die Primärluft (Zuluft) zugeführt wird (Diagramm 1).
- 3. Die verbleibende Kühlleistung P,, muss (wasserseitig) über den Celo zugeführt werden.

Formel für die Kühlleistung der Primärluft:

$$P_a = q_{ma} \times c_{pa} \times \Delta t_{ra}$$

Größenwertgleichungen bei t. = 25°C mit:

q_a = Primärluftmenge

 $P_a^{[a]}[W] = q_a^{[a]}[l/s] \times 1.2 \times \Delta t_{ra}^{[a]}[K]$ und $P_a^{[a]}[W] = q_a^{[a]}[m^3/h] \times 0.33 \times \Delta t_{ra}^{[a]}[K]$

Mindestwasserdurchfluss

Bitte beachten Sie, dass Volumenströme unter dem Überschreitung des nominalen Volumenstromes ist ebenfalls nicht zu empfehlen und erhöht die Leistung nur in geringem Umfang.

Rohrdurchmesser	q _{wmin}	q _{wnom}
12 mm	0,025 l/s	0,038 l/s

Definitionen:

P_a = Luftseitige Kühlleistung [W] P_w = Wasserseitige Kühlleistung = Wasserseitige Kühlleistung [W]

P_{tot} = Gesamtleistung [W]

 q_{ma} = Luftmassenstrom [kg/s]

= Primärluftmenge [l/s]

= Wassermenge [l/s] q_{w}

q_{wmin} = Minimale wassermenge [l/s]

q_{wnom} = Nennwasservolumen [l/s]

 c_{pa}^{instant} = Wärmekapazität, spezifische Luft [1,004 kJ/kg K]

= Raumtemperatur [°C]

= Wasservorlauftemperatur [°C]

= Wasserrücklauftemperatur [°C]

 Δt_{ra} = Temperaturdifferenz zwischen Raumtemperatur und der Zulufttemperatur [K]

 Δt_{rw} = Temperaturdifferenz, zwischen Raum- und der mittleren Wassertemperatur [K]

 Δt_{w} = Temperaturdifferenz Wasserkreislauf [K]

 $\epsilon_{_{\!\Delta tw}}^{}$ = Kapazitätskorrektur für die Temperatur

 $\epsilon_{qw} = \text{Kapazitätskorrektur für den Wasserfluss}$

= Spezifische Kühlleistung (bezogen auf Länge und 1 K Temperaturdifferenz [W/K]

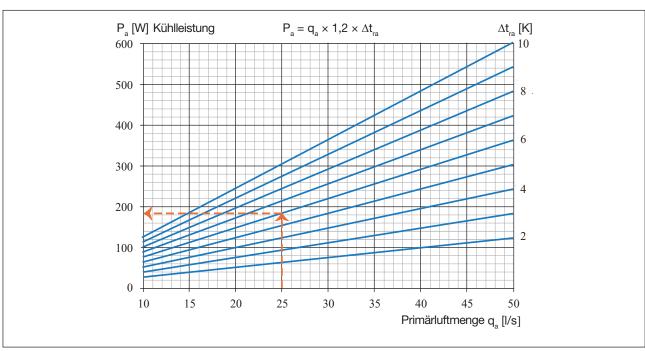


Diagramm 1. Kühlleistung P als Funktion von der Luftmenge q. Wenn die Luftmenge 25 l/s beträgt und die Temperaturdifferenz der Zuluft \(\Delta t_n \) bei 6 K, liegtdie Kühlleistung entsprechend dem Diagramm bei 180 W.

Celo

Dimensionierung

Wasserseitige Kühlleistung P.,

Zum Ermitteln der wasserseitigen Kühlleistung P_{w} mit dem Diagramm 2 bitte folgendermaßen vorgehen:

- Berechnen Sie \(\Delta t_{rw} \) (Differenz zwischen Raum- und der mittleren Wassertemperatur).
- 2. Produktlänge L minus 0,2 m ergibt die aktive Länge $L_{\rm act}$ des Balkens.
- Den Quotient aus Luftmenge q_a und der aktive Länge L_{act} auf der unteren Achse des Diagramms suchen.
- Dann über die entsprechenden Druckkurve die spezifische Kühlleistung P_{Lt} ablesen.
- Multiplizieren Sie die abgelesene spezifische Kühlleistung mit der Temperaturdifferenz ∆t_{rw} und der aktiven Länge L_{ort}.

Beispiel 1:

Wie groß ist die wasserseitige Kühlleistung eines 3,6 m langen Modells Celo bei einer Luftmenge von 20 l/s und einem Druck von 80 Pa?

Die Raumtemperatur sei $t_r = 24,5^{\circ}\text{C}$. Die Kühlwassertemperatur Vorl./Rückl. beträgt:14/17 $^{\circ}\text{C}$.

Antwort:

Temperaturdifferenz:

$$\Delta t_{rw} = t_r - (t_{wi} + t_{wo}) / 2$$

 $\Delta t_{rw} = 24,5^{\circ}C - (14^{\circ}C + 17^{\circ}C) / 2 = 9 \text{ K}$

Aktive Länge:

$$L_{act} = 3.6 \text{ m} - 0.2 \text{ m} = 3.4 \text{ m}$$

 $q_a / L_{act} = Luftmenge/Meter = 20 l/s / 3.4 m = 5.8 l/(s m)$

Aus Diagramm 2 folgt: $P_{LL} = 17.2 \text{ W/(m K)}$.

Kühlleistung: $P_w = 17.2 \text{ W/(m K)} \times 9 \text{ K} \times 3.4 \text{ m} = 526 \text{ W}$

Hinweis: Das Leistungsdiagramm zeigt die Kühlleistung beim nominalen Wasserdurchfluss von $q_{wnom}=0,038$ l/s. Zur Bestimmung der Kühlleistung bei anderen Durchflüssen multiplizieren Sie die ermittelte Leistung mit dem Korrekturfaktor ϵ_{qw} aus Diagramm 3. Siehe auch Beispiel 2.

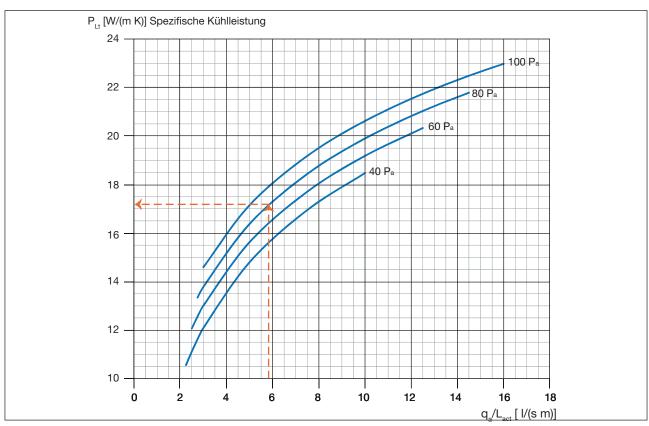


Diagramm 2: Spezifische Kühlleistung P_{Lt} pro aktiven Meter und Kelvin als Funktion von Luftmenge pro aktiven Meter bei Düsendruck von 40, 60, 80 und 100 Pa.

Celo

Dimensionierung

Kapazitätskorrektur für den Wasserfluss ϵ_{max}

Beispiel 2:

Benutzen Sie die errechnete Kühlleistung, um die Wassermenge zu berechnen mit: $q_w = P_w / (c_{pw} x \Delta t_w)$ $q_w = 526 / (4200 x 3) = 0,041 l/s$

Kapazitätskorrektur für den Wasserfluss $\varepsilon_{\rm qw}$ wird dann sein1,015 (siehe Diagramm 3) und die neue Leistung beträgt:

$$P_{w} = 526 \times 1,015 = 534 \text{ W}.$$

Mit der neuen Kühlleistung kann per Iterationverfahren ein neuer Wasserdurchfluss berechnet werden:

$$q_{xy} = 534 / (4200 \times 3) = 0.042 \text{ l/s}$$

Ablesen Kapazitätskorrektur für den Wasserfluss $\epsilon_{_{\rm QW}}$ 1,02 und die neue Kühlleistung beträgt:

$$P_{w} = 526 \times 1,02 = 537 \text{ W}.$$

Mit der neuen Kühlleistung kann per Iterationverfahren ein neuer Wasserdurchfluss berechnet werden:

$$q_w = 537 / (4200 \times 3) = 0.043 \text{ l/s}$$

Ablesen Kapazitätskorrektur für den Wasserfluss ϵ_{qw} 1,025 und die neue Kühlleistung beträgt:

$$P_{w} = 526 \times 1,025 = 539 \text{ W}.$$

Mit der neuen Kühlleistung kann per Iterationverfahren ein neuer Wasserdurchfluss berechnet werden:

$$q_{w} = 539 / (4200 \times 3) = 0.043 \text{ l/s}$$

Da das Ergebnis sich nur noch gering verändert, ist die berechnete Leistung von 539 W jetzt ausreichend genau.

Beispiel 3:

Wie groß ist die wasserseitige Kühlleistung von zwei in Reihe geschalteten 3,6 m langen Modellen Celo bei einer Luftmenge von 20 l/s und einem Druck von 80 Pa?

Antwort:

Berechnen Sie die Leistung eines Balkens wie in Beispiel 1. Der Wert beträgt 526 W. Die Gesamtleistung für zwei in Reihe geschaltete Balken beträgt dann:

$$P_{W} = 2 \times 526 \text{ W} = 1052 \text{ W}$$

Benutzen Sie die errechnete Kühlleistung, um die Wassermenge zu berechnen mit: $q_w = P_w / (c_{pw} \times \Delta t_w)$ $q_w = 1052 / (4200 \times 3) = 0,083 l/s$

Kapazitätskorrektur für den Wasserfluss $\epsilon_{\rm qw}$ wird dann sein1,055 (siehe Diagramm 3) und die neue Leistung beträgt:

$$P_{w} = 1052 \times 1,055 = 1110 \text{ W}$$

Mit der neuen Kühlleistung kann per Iterationverfahren ein neuer Wasserdurchfluss berechnet werden:

$$q_w = 1110 / (4200 \times 3) = 0.088 I/s$$

Ablesen Kapazitätskorrektur für den Wasserfluss $\epsilon_{_{\rm qw}}$ 1,06 und die neue Kühlleistung beträgt:

$$P_{w} = 1052 \times 1,06 = 1115 \text{ W}$$

Mit der neuen Kühlleistung kann per Iterationverfahren ein neuer Wasserdurchfluss berechnet werden:

$$q_w = 1115 / (4200 \times 3) = 0,088 I/s$$

Da das Ergebnis sich nur noch gering verändert, ist die berechnete Leistung von 1115 W jetzt ausreichend genau.

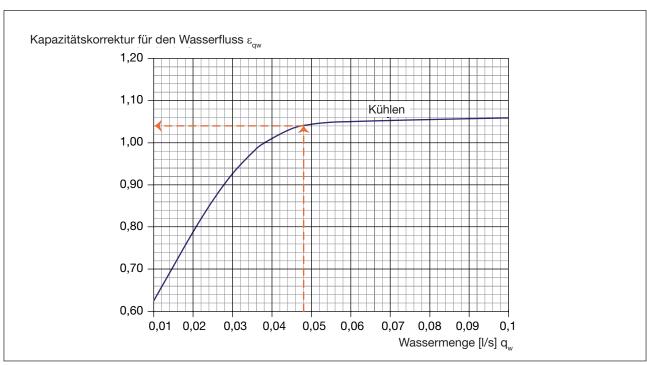


Diagramm 3: Kapazitätskorrektur für den Wasserfluss ε_{aw}

Celo

Druckverlust im Wasserkreislauf, Kühlung

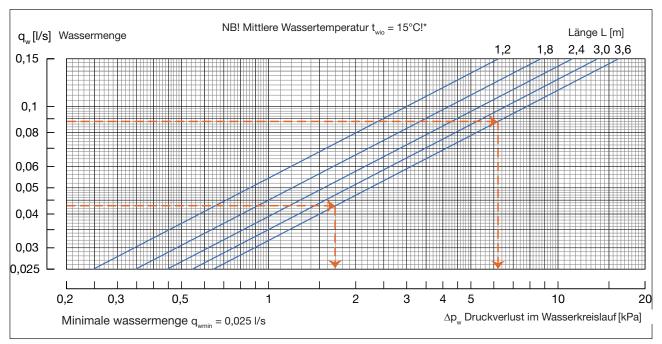


Diagramm 4: Druckverlust im Wasserkreislauf, Kühlung.

Beispiel 4:

Celo 3,6 m erbringt eine Leistung von $P_{w} = 539 \text{ W}$.

 $\Delta t_{w} = 3 \text{ K}$

 $q_w = P_w / (c_{pw} \times \Delta t_w)$

 $q_w = 539 \text{ W} / (4200 \text{ Ws/(kg K)} \times 3 \text{ K}) = 0.043 \text{ l/s}$

Der Druckverlust im Wasserkreislauf Δp_w wird in Diagramm 4 mit 1,7 kPa abgelesen.

Beispiel 5:

Zwei Celo 3,6 m in Reihe erbringt eine Leistung von $\rm P_{\rm w}$ = 1115 W.

 $\Delta t_{w} = 3 \text{ K}$

 $q_w = P_w / (c_{pw} \times \Delta t_w)$

 $q_w = 1115 \text{ W} / (4200 \text{ Ws/(kg K)} \times 3 \text{ K}) = 0.088 \text{ l/s}$

Der Druckverlust im Wasserkreislauf $\Delta p_{\rm w}$ wird in Diagramm 4 mit 5,8 kPa abgelesen.

Der Druckverlust für zwei Celo Balken beträgt dann 5,8 + 5,8 = 12,4 kPa.

Definitionen:

q... = Wassermenge [l/s]

P" = Wasserseitige kühlleistung/Heizleistung [W]

c = Spez. Wärmekapazität v. Wasser [J/(kg K)]

Lt., = Temperaturdifferenz im Wasserkreislauf [K]

= Mittlere Wassertemperatur [°C]

 Δp_{w} = Druckverlust im Wasserkreislauf [kPa]

*Die Diagramme gelten bei einer bestimmten mittleren Wassertemperatur $t_{\mbox{\tiny wio}}$. Für abweichenden Temperaturen können Sie die genaue Berechnung sehr leicht in www.lindQST.com unter "Produktberechnung Wasser" durchführen.

Celo

Schalldaten

Schalldruckpegel $L_{_{D}}$ [dB(A)]

Luftmenge (I/s)								
	Luftdruck (Pa)	15	20	25	30	35	40	45
	60	16	18	21	22	23	25	28
Ecophon Master DS (40 mm)	80	18	21	23	25	27	28	31
26 (10 11111)	100	21	23	25	26	28	30	33
	60	17	19	22	23	24	26	29
Ecophon Focus DS (20 mm)	80	19	22	24	26	28	29	32
20 (20 11111)	100	22	24	26	27	29	31	34

Tabelle 1: Celo, Schalldruckpegel L_p [dB(A)]. Die Messungen wurden mit 2 Celo Zuluftbalken durchgeführt. Die Messungen wurden in einer Testkammer mit den Maßen (L×W×H) 3,8 m × 3,2 m × 2,7 m durchgeführt. Die Testkammer hat eine Decke von 3,6 m × 3,0 m mit verschiedenen Akustikplatten von Ecophon (siehe Tabelle oben). Die Wände der Testkammer sind aus Gips, der Boden ist aus Beton.

Schalldruckpegel L_{poct}

C _{oct} (dB[A]) Oktavband, durschnittliche Frequenz (Hz)								
63 Hz 125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz 8 kHz								
Ecophon Master DS (40 mm)	4	9	5	0	-8	-12	-12	-9
Ecophon Focus DS (20 mm)	2	9	5	1	-8	-13	-13	-10
Toleranz	±2	±2	±2	±2	±2	±2	±2	±2

Tabelle 2: Die Schalldruckpegel L_{woct} für jedes Oktavband im Balken werden berechnet, indem die Korrekturen C_{oct} aus der Tabelle oben zum Schalldruckpegel der jeweiligen Decke bei verschiedenen Luftdrücken oder Luftmengen hinzu addiert werden. Die Schalldruckpegel werden mit folgender Formel berechnet: $L_{woct} = L_p + C_{oct}.$

Eigendämpfung AL

∆L[dB]	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	8 kHz
Ecophon Master DS (40 mm)	27	23	22	14	12	16	14	17
Ecophon Focus DS (20 mm)	29	22	21	13	11	15	14	17

Tabelle 3: Celo Eigendämpfung ∆L.

Gewicht & Wassermenge

	Celo
Trockengewicht [kg/m]	6,5
Wassermenge [l/m]	0,35
Kupferrohre, Qualität	SS/EN 12449
Druckklasse	PN10

Tabelle 4: Gewicht und Wassermenge.

Celo

Festlegung von Auslass- und Abluftschlitzen

Definition der Auslassschlitze

Ein Schlitz in der Zwischendecke durch den die gekühlte Luft in den Raum abgegeben wird. Der Auslassschlitz ist festgelegt als der Bereich von 0,5 m jeder Seite des Balkens, längsseitig gesehen. Länge des Schlitzes = Anzahl der Balken x (Balkenlänge + 1 m).

Auslassschlitz für die Montage über Zwischendecke Der Schlitz für den Auslass muss mindestens 60 mm breit sein.

Auslassschlitz für die hängende Inselmontage

Der Schlitz für den Auslass muss mindestens 240 mm breit sein. Die Breite des Auslassschlitzes beeinflusst die Luftgeschwindigkeiten (siehe Diagramm 5).

Definition der Einsaugschlitze

Ein Schlitz in der Zwischendecke durch den warme Luft aus dem Raum in den Zuluftbalken gesaugt wird. Der Einsaugschlitz ergibt sich, wenn man die Länge des Abluftschlitzes von der gesamten Länge des Schlitzes im Raum abzieht.

Die Fläche des Einsaugschlitzes muss mindestens 0,1 m²/m von der aktiven Länge des Balkens betragen, um die angegebene Leistung zu erreichen. Ansonsten muss die Leistungreduktion mit dem Reduktionsfaktor aus Diagramm 5 brechnet werden.

Definition der aktiven Länge

Aktive Länge des Balkens = gesamte Länge- 0,2 m.

Schlitz für die Abluft

In ausbalancierten Lüftungssystemen bei denen in etwa soviel Abluft ensteht, wie Zuluft genutzt wird, ist kein weiterer Schlitz für die Abluft nötig.

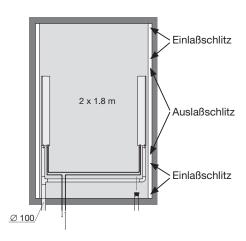


Abbildung 1: Zwei Celo Balken mit offenen Schlitzen.

Beispiel 6:

Ein Celo Kühlsystem soll in einem Raum von $4,5 \times 2,4$ m installiert werden. Zwei 1,8-m Celo Balken wurden ausgewählt, um die erforderliche Kühlleistung zu erreichen. Der Wasserkreislauf der Balken muss in Reihe geschaltet sein (siehe Abbildung 1). Es wird je ein Balken an den langen Seiten des Raums montiert. Wie sollte die Breite der Auslass- und Einsaugschlitze sein?

Einsaugschlitz = gesamte Schlitzlänge - Auslassschlitze $2 \times 4,5 \text{ m} - 2 \times (1,8 \text{ m} + 1 \text{ m}) = 3,4 \text{ m}$

Die Fläche des Einsaugschlitzes muss mindestens 0,1 m²/m von der aktiven Länge des Balkens betragen, um eine Reduktion der Kühlleistung zu vermeiden: Einzugbereich = 0,1 m²/m \times (2 \times 1,6 m) = 0,32 m²

Berechen Sie die Breite des Schlitzes: $3,4 \text{ m} \times \text{Schlitzbreite} = 0,32 \text{ m}^2 = > \text{Schlitzbreite} = 0,32 \text{ m}^2 / 3,4 \text{ m} = 0,094 \text{ m} = 94 \text{ mm}$

Da der Auslassschlitz mindestens 60 mm breit sein muss, ist diese Bedingung erfüllt.

Nehmen wir eine maximale Schlitzbreite von 70 mm an. Wie hoch wäre die Reduktion der Kühlleistung?

Fläche des Schlitzes: $0.070 \text{ m} \times 3.4 \text{ m} = 0.238 \text{ m}^2$ $0.238 \text{ m}^2 / 3.2 \text{ m} = 0.074 \text{ m}^2 / \text{m}$ der aktiven Balkenlänge.

Lesen Sie den Reduktionsfaktor in Diagram 4 ab. Der Wert ist 0,97, das bedeutet die Leistungsreduktion ungefähr 3% beträgt.

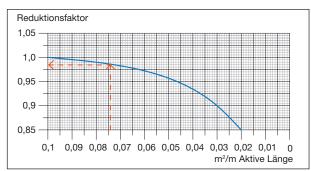
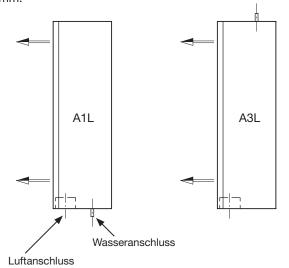



Diagramm 5: Leistungsreduktion aufgrund von reduziertem Einsaugschlitz.

Celc

Anschlüsse & Verbindungen

Celo ist in allen Längen von 1,2 m bis 3,6 m in Stufen von 0,3 m erhältlich. Der Wasseranschluss hat einen Außendurchmesser von \varnothing 12 mm, der Luftanschluss hat \varnothing 80 mm.

Bezeichnungen

Abbildung 2 zeigt die verschiedenen Anschlussmöglichkeiten beim Celo. Typ A1 hat einen horizontalen Luft- und Wasseranschluss auf der selben Stirnseite des Balkens.

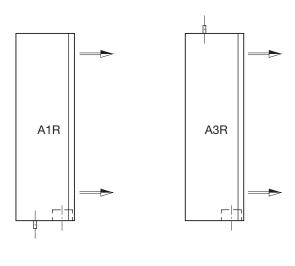
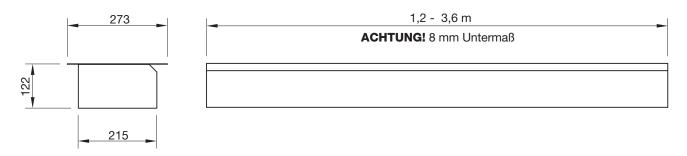



Abbildung 2: Celo hat vier verschiedene Anschlussmöglichkeiten: A1L, A3L, A1R and A3R.

Breite, Höhe & Länge

Abmessungen Anschlüsse [mm]

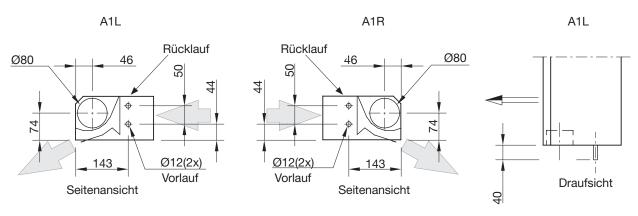


Abbildung 3: Abmessungen der Anschlüsse beim Celo.

12

Celo

Montage

Celo wird oberhalb der Zwischendecke montiert. Der Balken wird an den Deckenträgern mit Hängeseilen, Gewindestangen oder Schrauben befestigt. Die Komponenten für die Montage können als weiteres Zubehör bestellt werden.

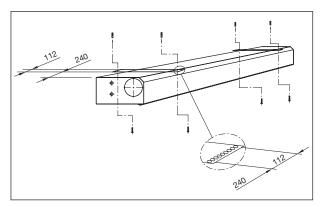


Abbildung 4: Abmessungen der Befestigungspunkte.

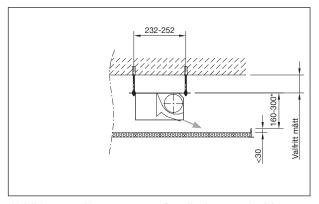


Abbildung 5: Abmessungen für die hängende Montage bei Inselmontage.

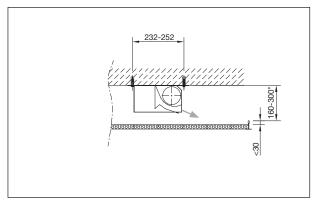


Abbildung 6: Abmessungen für die Montage an einem Deckenträger. Hängende Inselmontage.

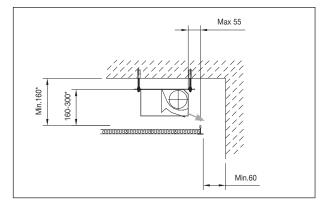


Abbildung 7: Abmessungen für die Monatge mit Luftauströmung entlang der Wand.

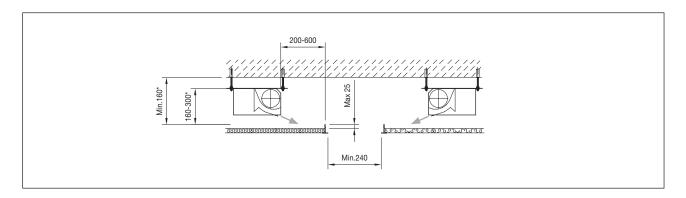


Abbildung 8: Abmessungen für die hängende Inselmontage. Der maximale Abstand von 25 mm gilt für die obere Ecke der Zwischendecke und den höchsten Punkt der Decke, der den Luftstrom noch beeinflussen kann.

*Der Abstand gilt für die obere Ecke der Zwischendecke und den höchsten Punkt der Decke, der den Luftstrom noch beeinflussen kann.

Celc

Montagebeispiele

Montage über einer Zwischendecke mit Schlitzen

Um eine ausreichende Wassermenge entsprechend dem Leistungsdiagramm zu gewährleisten, ist es häufig notwendig zwei Balken in Serie zu nutzen, wenn kurze Einheiten verwendet werden.

Wenn der Wasserkreislauf in Serie geschaltet wird, fließt die gleiche Wassermenge durch beide Balken.

Dabei wird die Wassermenge im Gegensatz zu parallel geschalteten Balken um die Hälfte reduziert und das bei gleicher Temperaturdifferenz (Vorlauf/Rücklauf) und Kühlleistung.

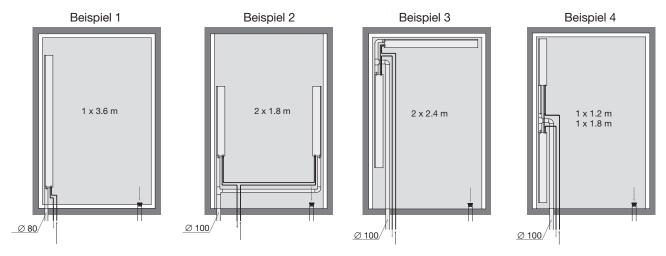


Abbildung 9: Vier Beispiele wie Celo in Kombination mit verschiedenen Schlitzen in der Zwischendecke inklusive passendem Luft- und Wasseranschluss montiert werden kann.

HINWEIS! Jeder Balken hat einen Luftanschluss von Ø80 mm. Jeder Balken hat eine maximale Luftmenge um die gewünschten Schallvorgaben zu erfüllen. Zwei Balken können mit einer größeren Gesamtluftmenge arbeiten. Um erhöhte Luftgeschwindigkeiten zu vermeiden, sollte der Abstand von Ende zu Ende größer als 1200 mm sein (siehe Abbildung 9, Beispiel 4). Die Steuerventile von Lindab können als Ablufteinheiten verwendet werden.

Inselmontage

Celo kann auch als hängende Insel montiert werden. Die Abbildung unten zeigt ein Beispiel.

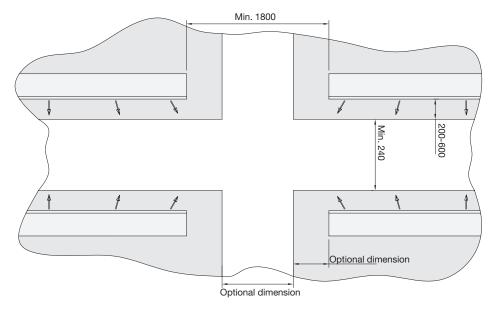
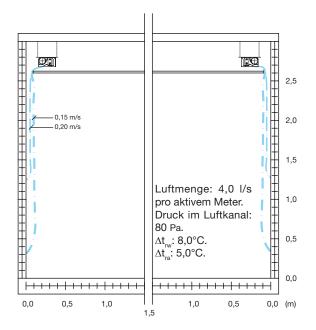
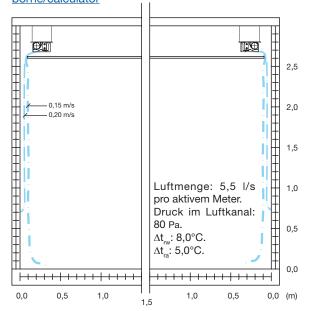



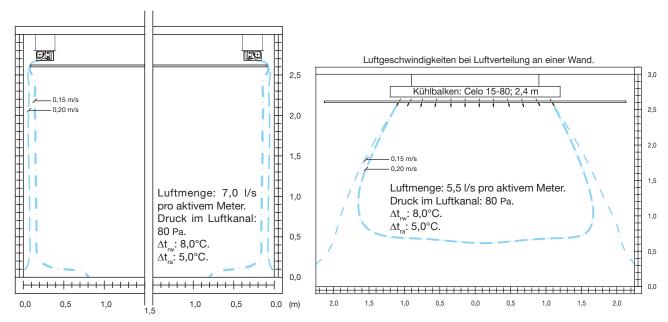
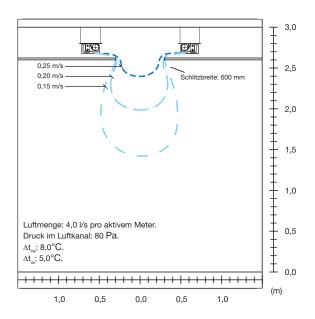
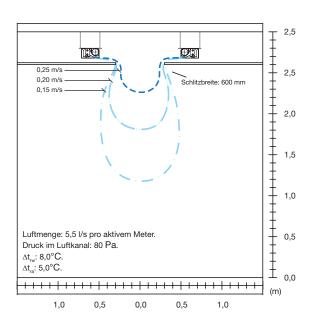
Abbildung 10: Das Bild zeigt vier Ecken, wo sich die abgehängten Deckeninseln treffen.

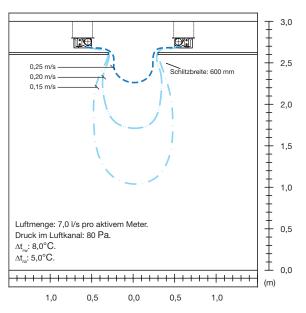


Celo

Verteilungsbilder

Berechnungen für andere Abstände zwischen den Kühlbalken und für abweichende Luftmengen nutzten Sie unser Auslegungsprogramm. www.lindQST.com/water-borne/calculator


Abbildung 11 - 14: Luftgeschwindigkeiten bei Montage über der Zwischendecke; Schlitze entlang der Wand.

Celo

Verteilungsbilder, Celo

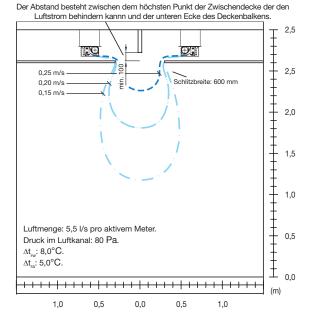


Abbildung 15 - 18: Luftgeschwindigkeiten bei Inselmontage.

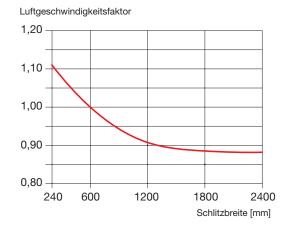


Diagramm 6: Die oben gezeigten Luftgeschwindigkeiten beziehen sich auf eine Schlitzbreite von 600 mm bei Inselmontage. Wenn der Schlitz schmaler als 600 mm ist, nehmen die Luftgeschwindigkeiten zu. Ist der Schlitz breiter als 600 mm, nehmen die Luftgeschwindigkeiten ab

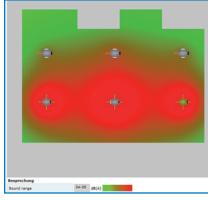
Celo

IT-Lösungen für schnelles und einfaches Planen

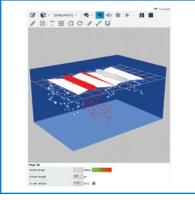
<u>lindQST®</u>

Das Lindab Quick Selection Tool lindQST® ist ein sehr schnelles, einfach zu handhabendes und flexibles Onlinewerkzeug für Ihre tägliche Arbeit. lindQST® hilft Ihnen bei der Auswahl des richtigen Luftdurchlasses, Wasserproduktes oder der Brandschutzklappe und findet schnell die zugehörige Dokumentation. Weiterhin wählen Sie mit Hilfe von lindQST Ihren passenden Schalldämpfer, finden den für Sie optimalen Ventilator oder erstellen ganz einfach Ihr Verdrahtungsschema anhand der ausgewählten Steuerund Regelkomponenten. Noch nicht genug? Fügen Sie Ihre ausgewählten ICS-Produkte einfach in Ihre Räume ein und simulieren die tatsächlichen Luftbewegungen unter Berücksichtigung der berechneten Luftgeschwindigkeiten und Schallwerten. Selbstverständlich können Sie die vorgenommene Auswahl und Berechnungen graphisch darstellen und für Ihre Dokumentation inkl. aller vorhandenen Werte in Datenblättern und ganzen Projekt-Raumbüchern ausgeben.

Übernehmen Sie anschließend ganz einfach die gewählten ICS-Produkte in Ihre CAD-Zeichnung.


Mit lindQST® werden Sie sehr einfach das am besten geeignete Produkt für Ihr Projekt finden. Es stellt einen einfachen und schnellen Zugang zu den aktuellsten Produktinformationen, Ausschreibungstexten und Montageanleitungen im Internet dar und ist somit das ideale Werkzeug für Planer und Ausführende gleichermaßen.

Die wichtigsten lindQST®-Funktionen im Überblick


- Schnelle Produktauswahl von Luft- und wasserprodukten.
- Einfacher Zugriff auf alle aktuellen Dokumentationen.
- Schnelle Auslegung von Brandschutzklappen.
- Indoor Climate Designer: Graphische Darstellung der räumlichen Situation in 2D/3D und Grundrissübernahmen aus AutoCAD®.
- Berechnung von Schallleistungspegeln, Druckverlusten und Strömungsverhältnissen.
- 3D-Partikel bzw. Rauch zeigen die Luftverteilung im Raum.
- Diagramm zum zeitlichen Verlauf der CO₂-Konzentration im Raum.
- Raumbuchgenerierung und Datenblatt zu einzelnen Räumen und Auslässen oder gesamten Projekten.
- Projekt kann im eigenen Projektbereich gespeichert und ausgetauscht werden.

Auswahl Brandschutzklappe.

Darstellung der Schallausbreitung im Raum.

Simulation der Luftbewegung im Raum.

Celo

Regeltechnik

Für technische Möglichkeiten und Daten siehe gesondertes Kapitel: "Regula".

Bezeichnungen

Produkt/Version:		Celo
Anschlussdurchmess	12	
Anschlussdurchmess	er Luft [mm]:	80
Anschlussmöglichkei	ten:	Luft: A
Wasser:		1, 3
Luftanschlussrichtun	g:	L/R
Länge, [m]:	Län	ige in Metern
Luftmenge [l/s]:	Muss immer angeg	eben werden
Düsendruck [Pa]:	Muss immer angeg	eben werden
Verteilungsbild:	S	tandard (30°)
Zusätzliche Funktionen:		Siehe Seite 5

Ausschreibungstext

Das Modell Celo wurde zusammen mit der Firma Ecophon entwickelt, die akustische Decken passend zu unserem System anbieten.

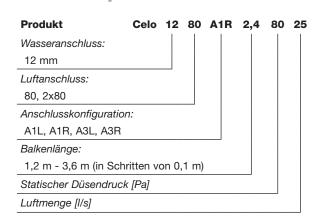
Celo ist ein Zuluftbalken für die Montage oberhalb einer abgehängten Decke. Celo basiert auf einer einzigartigen Technik, die es ermöglicht, die gekühlte Luft durch Schlitze in der Zwischendecke entlang der Wand bis zum Boden zu leiten. Zusammen mit der fächerförmigen Luftverteilung sorgt diese Technik für geringe Luftgeschwindigkeiten im Aufenthaltsbereich und garantiert eine hohe.

Celo ist mit einer vertikalen Kühlbatterie und einem querliegendem Verteilerkanal ausgestattet. Es gibt auf jeder Stirnseite des Balkens einen Luftanschluss, an einem der beiden wird die Zuluft angeschlossen. An dem ungenutzen Anschluss wird eine Reinigungsklappe mit Griff angebracht (Bezeichnung ESUH 80). Die Reinigungsöffnung ermöglicht die Wartung und Reinigung des Verteilerkanals. Das Modell wird mit voreingestellter Luftmenge und Düsendruck geliefert.

Die Luft wird dem Raum durch die entlang des Verteilerkanals angebrachten Coanda-Düsen zugeführt. Die äußeren Düsen haben einen seitlichen Winkel von 30°, dieser Düsenwinkel wird kleiner, je näher die Düsen an der Mitte des Balkens liegen. Durch diese Anordnung wird ein fächerförmiges Verteilungsbild erreicht.

Die Düsen sind zum Einstellen einfach von unten zu erreichen, somit können Düsendruck und Verteilungsbild jederzeit angepasst werden.

Lindab's Zuluftbalken sind Eurovent zertifiziert und gemäß EN-15116 und EN-14518 getestet.


Celo ist in allen Längen von 1,2 m bis 3,6 m in Stufen von 0,3 m erhältlich. Der Wasseranschluss hat einen Außendurchmesser von Ø 12 mm, der Primärluftanschluss hat Ø80 mm. Leitungsanschlüsse (Kaltwasser u. Primärluft) an der Stirnseite. Andere Konfigurationen sind möglich.

Fabrikat: Lindab Typ: Celo-12-80-A1-2,4m

Technische Daten (Beispiel):

Balkenlänge:	2400 mm
9	
Balkenbreite:	215 mm
Balkenhöhe:	122 mm
Anschlusskonfiguration:	A1L
Farbe:	weiß RAL 9010
Anzahl:	2 Stk.
Vor-/ Rücklauftemp.:	16/18°C
Zulufttemperatur:	18°C
Raumtemperatur:	26°C
Wasseranschluss:	12 mm
Wassermenge:	0,054 l/s
Wassers. Druckverlust:	3,0 kPa
Zuluftanschluss:	80 mm
Zuluftmenge:	25 l/s
Luftseitiger Druckverlust:	60 Pa
Schallleistungspegel:	24 dB(A)
Kühlleistung von 2 Balken:	678 W
Kühlleistung Zuluft:	240 W
Kühlleistung gesamt:	918 W

Bestellbeispiel

Die meisten von uns verbringen den Großteil ihrer Zeit in Innenräumen. Das Innenraumklima ist entscheidend dafür, wie wir uns fühlen, wie produktiv wir sind und ob wir gesund bleiben.

Wir bei Lindab haben uns deshalb zum vorrangigen Ziel gesetzt, zu einem Raumklima beizutragen, das das Leben der Menschen verbessert. Dafür entwickeln wir energieeffiziente Lüftungslösungen und langlebige Bauprodukte. Wir wollen auch zu einem besseren Klima für unseren Planeten beitragen, indem wir auf eine Weise arbeiten, die sowohl für die Menschen als auch die Umwelt nachhaltig ist.

Lindab | Für ein besserees Klima

