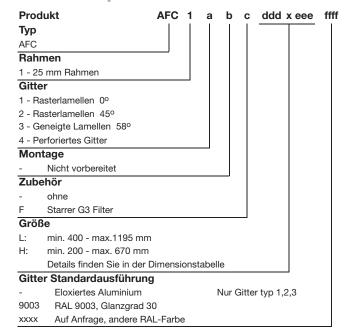


AFC

Gitter

Beschreibung


AFC ist ein Abluftgitter mit Filterhalter, das mit einem starren Filter der Klasse G3 ausgestattet ist.

AFC ist in verschiedenen Aluminium-Gitterausführungen verfügbar und speziell für den Einbau in u. a. modularen Deckensystemen konzipiert. Optional Rasterlamellen mit Neigung 0° oder 45°, feststehende, um 58°geneigte Lamellen oder perforierte Frontplatte.

Dank des cleveren Push-Pull-Verschlusssystems am Gitter ist der Filter leicht zugänglich.

Das AFC Gitter ist mit einem Anschlusskasten (PBAF) als Zubehör erhältlich.

Bestellbeispiel

Beispiel 1: AFC-11-F-1000-300-9003 Beispiel 2: AFC-12-F-600-400

Mind. - max. Maße

Grö	Ве		Lx	H
400	400	Nominal	432	432
500	500	Nominal	532	532
600	600	Nominal	632	632
600	400	Nominal	632	432
800	400	Nominal	832	432
1000	200	Nominal	1032	232
1000	300	Nominal	1032	332
1000	400	Nominal	1032	432
595	295	Äußere Rahmen	595	295
595	595	Äußere Rahmen	595	595
620	620	Äußere Rahmen	620	620
670	670	Äußere Rahmen	670	670
1195	595	Äußere Rahmen	1195	595

Gitter in Standardgrößen verfügbar, siehe obige Tabelle.

LindQST

Mit dem fortschrittlichen Web-Tool LindQST von Lindab können Sie für das gesamte Sortiment an Gittern Kalkulationen durchführen, einen geeigneten Gittertyp finden und die Abmessungen aller Anwendungen einsehen.

Die Funktionen Produktauswahl, Raumdimensionierung und Dokumentationen-Suche sind direkt online verfügbar und auch mit mobilen Geräten nutzbar. Informationen hierzu und vieles mehr finden Sie auf www.lindqst.com.

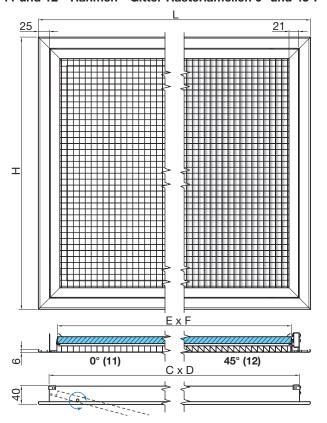
Zubehör

Filter: starrer Filter G3
Anschlusskasten: PBAFC

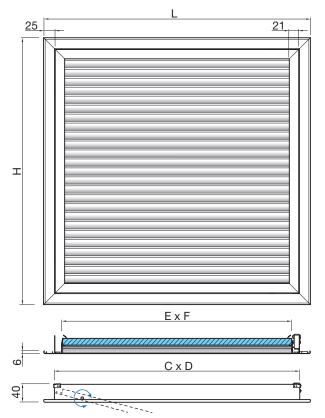
Materialien und Ausführung

Gitterrahmen: Aluminum
Lamellen: Aluminum
Rasterlamellen: Aluminum
Perforierte Platte: Stahl

Gitter Standardausführung:

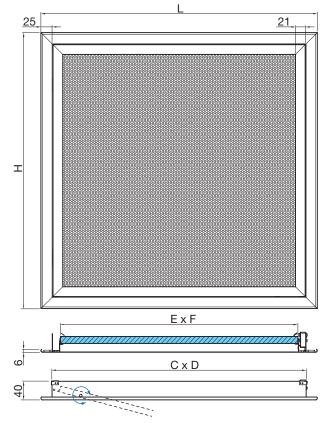

- Eloxiertes Aluminium (nur Gittertyp 1, 2, 3)
- RAL 9003 Glanzgrad 30

Das Gitter ist in anderen Farben erhältlich. Für weitere Informationen wenden Sie sich bitte an das Vertriebsbüro von Lindab.



Rahmen und Gitter

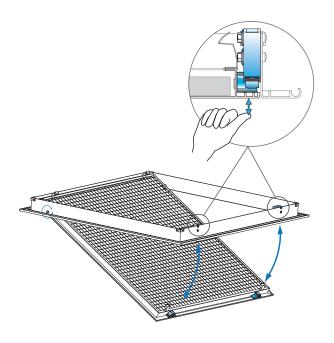
11 und 12 - Rahmen - Gitter Rasterlamellen 0° und 45°.



13 - Rahmen - 58° geneigte Lamellen.

Montage

14 - Rahmen - Perforiertes Gitter.



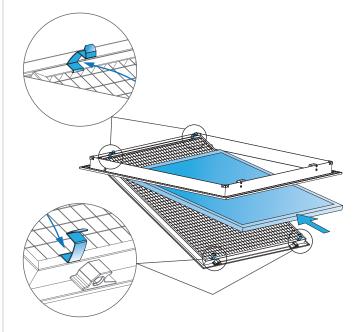
LxH Siehe Tabelle zu den Min.-/Max.-Abmessungen auf Seite 2.

Montage

- Ohne Montagevorbereitung

Das Öffnen der klappbaren Frontplatte und der Zugang zum Filter erfolgen über das Push-Pull-System.

Zubehör


F - starrer Filter G3

Die Filterdicke beträgt 15 mm.

Der Filter kann so bestellt werden, dass er zum AFC mit den von Ihnen gewählten Abmessungen (L x H) passt. Die Filtermaße sind auf den Abbildungen von Rahmen und Gitter auf der vorherigen Seite als E x F angegeben.

$$E \times F = L - 85 \times H - 85$$

Der Filter kann ohne den Einsatz von Werkzeugen an der Frontplatte befestigt werden.

Freier Querschnitt

Gittergrö	ße [mm]		A _k (m ²)							
L	Н		AFC-11	AFC-12	AFC-13	AFC-14				
400	400	Nominal	0,121	0,110	0,040	0,053				
500	500	Nominal	0,199	0,181	0,068	0,088				
600	600	Nominal	0,294	0,268	0,104	0,133				
600	400	Nominal	0,189	0,172	0,063	0,084				
800	400	Nominal	0,257	0,234	0,087	0,115				
1000	200	Nominal	0,146	0,133	0,039	0,060				
1000	300	Nominal	0,236	0,215	0,074	0,103				
1000	400	Nominal	0,326	0,296	0,110	0,146				
595	295	Äußere Rahmen	0,110	0,100	0,033	0,046				
595	595	Äußere Rahmen	0,257	0,234	0,090	0,116				
620	620	Äußere Rahmen	0,282	0,256	0,100	0,127				
670	670	Äußere Rahmen	0,336	0,305	0,120	0,153				
1195	595	Äußere Rahmen	0,552	0,501	-	-				

Schnellauswahl, Abluft, AFC-11 / AFC-12

(Gittergröße	,	Volumenstrom																		
	[mm]		m³/h	600	700	900	1000	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3500	3700	4000	4800
	A _k [m ²]		I/s	(167)	(194)	(250)	(278)	(333)	(389)	(444)	(500)	(556)	(611)	(667)	(722)	(778)	(833)	(972)	(1028)	(1111)	(1333)
		L _{WA}	[dB(A)]	<20	<20	26	29	35	40	45	49										
	595x295	V_k	[m/s]	1,5	1,8	2,3	2,5	3	3,6	4,1	4,6										
	(0,11)	Δp_t	[Pa]	2	3	5	6	8	11	15	19										
		*∆p _t F	[Pa]	25	34	57	70	>100	>100	>100	>100										
		L_{WA}	[dB(A)]					<20	<20	20	24	28	31	34	37	39	41	46	48		
	595x595	V_k	[m/s]					1,3	1,5	1,7	1,9	2,2	2,4	2,6	2,8	3	3,2	3,8	4		
	(0,257)	Δp_t	[Pa]					2	2	3	3	4	5	6	7	8	9	13	14		
		*∆p _t F	[Pa]					18	25	32	41	50	61	72	85	98	>100	>100	>100		
7	620x620	L _{WA}	[dB(A)]						<20	<20	22	25 2	28	31	34	36	39	44	46	48	
AFC-11		V _k	[m/s]						1,4 2	1,6 2	1,8 3	3	2,2 4	2,4 5	2,6 6	2,8 7	3 8	3,4 11	3,6 12	3,9 14	
¥	(0,282)	∆p _t *∆p _t F	[Pa] [Pa]						20	27	34	42	50	60	70	81	93	>100	>100	>100	
		L _{WA}	[dB(A)]						20	<20	<20	20	23	26	29	31	34	39	41	43	49
	670x670	V _k	[m/s]							1,3	1,5	1,7	1,8	20	2,2	2,3	2,5	2,9	3,1	3,3	49
	(0,336)	Δp,	[Pa]							2	2	2	3	4	4	5	6	8	8	10	14
	(0,000)	*∆p _t F	[Pa]							19	24	29	35	42	49	57	66	90	100	>100	>100
		L _{WA}	[dB(A)]											<20	<20	<20	20	25	26	29	35
	1195x595 (0,552)	V _k	[m/s]											1,2	1,3	1,4	1,5	1,8	1,9	2	2,4
			[Pa]											1	2	2	2	3	3	4	5
	, , ,	*∆p _t F	[Pa]											16	18	21	24	33	37	43	62
		L _{WA}	[dB(A)]	<20	20	28	32	38	43	47											
	595x295	V_k	[m/s]	1,7	1,9	2,5	2,8	3,3	3,9	4,5											
	(0,1)	Δp_t	[Pa]	3	3	6	7	10	14	18											
		*∆p _t F	[Pa]	26	35	58	71	>100	>100	>100											
		L _{WA}	[dB(A)]					<20	<20	23	27	31	34	37	39	42	44	49			
	595x595	V _k	[m/s]					1,4	1,7	1,9	2,1	2,4	2,6	2,9	3,1	3,3	3,6	4,2			
	(0,234)		[Pa]					2	2	3	4	5	6	7	9	10	11	16			
		*∆p _t F	[Pa]					18 <20	25 <20	33 21	41 24	51 28	62 31	74 34	86 37	100 39	>100	>100	48		
42	620x620	L _{WA}	[dB(A)]					1,3			24	2,2	2,4		2,8	39		3,8	48		
AFC-12	(0,256)	V _k ∆p,	[m/s] [Pa]					2	1,5 2	1,7 3	3	4	2,4 5	2,6 6	2,8 7	8	3,2 9	13	14		
Ā	(0,230)	∆p _t *∆p _t F	[Pa]					15	21	27	34	42	51	61	71	83	95	>100	>100		
		L _{WA}	[dB(A)]					13	<20	<20	<20	23	26	29	32	34	36	41	43	46	
	670x670	V _k	[m/s]						1,3	1,5	1,6	1,8	2	2,2	2,4	2,5	2,7	3,2	3,4	3,6	
	(0,305)	∆pt	[Pa]						1	2	2	3	4	4	5	6	7	9	10	12	
	(0,000)	*∆p₁F	[Pa]						15	19	24	30	36	43	50	58	67	91	>100	>100	
		L _{WA}	[dB(A)]										<20	<20	<20	20	22	27	29	32	38
	1195x595	V _k	[m/s]										1,2	1,3	1,4	1,6	1,7	1,9	2,1	2,2	2,7
	(0,501)	$\Delta \mathbf{p_t}$	[Pa]										1	2	2	2	2	3	4	4	6
			[Pa]										13	16	19	22	25	34	38	44	63

30 ≤ L_{wa} < 40 40 ≤ L_{wA} < 50

Die Daten sind gültig für:

- Abluft

HINWEIS!

Druckverlustwerte in Tabelle für AFC mit oder ohne Filter.

Terminologie:

- A_k = effektiver freier Querschnitt v_k = effektive Einströmgeschwindigkeit Δp_t F= Druckverlust mit Filter Δp_t = Druckverlust ohne Filter

- L_{WA}^{-1} = Schallleistungspegel

Schnellauswahl, Abluft, AFC-13 / AFC-14

5	[mm] A _k [m ²] 595x295 (0,033) 595x595 (0,09)		m³/h l/s [dB(A)] [m/s] [Pa] [Pa] [dB(A)]	200 (56) <20 1,7 3 6	300 (83) 25 2,5 7	400 (111) 32 3,4	450 (125) 35	500 (139)	600 (167)	700	800	900	1000	1200	1400	1500	1800	2000	2250	2500	2800
5	595x295 (0,033) 595x595	V_k Δp_t * $\Delta p_t F$ L_{WA}	[dB(A)] [m/s] [Pa] [Pa]	<20 1,7 3	25 2,5	32	. ,	, ,	(167)												
5	(0,033) 595x595	V_k Δp_t * $\Delta p_t F$ L_{WA}	[m/s] [Pa] [Pa]	1,7 3	2,5		35		` '	(194)	(222)	(250)	(278)	(333)	(389)	(417)	(500)	(556)	(625)	(694)	(778)
5	(0,033) 595x595	∆p _t *∆p _t F L _{WA}	[Pa] [Pa]	3		3.4		37	41	45	48										
5	595x595	*∆p _t F L _{WA}	[Pa]	-			3,8	4,3	5,1	5,9	6,8										
		L _{WA}		6		13	17	21	30	40	53										
			[dB(A)]	3	14	25	32	39	57	77	100										
		V _k					<20	<20	<20	21	24	27	30	34	38	39	43	46	49		
7.	(0,09)		[m/s]				1,4	1,5	1,9	2,2	2,5	2,8	3,1	3,7	4,3	4,6	5,6	6,2	6,9		
). I			[Pa]				3	3	5	7	9	11	14	20	27	31	45	55	70		
0			[Pa]				5	6	9	12	16	20	25	36	49	57	81	>100	>100		
₩.		L _{WA}	[dB(A)]					<20	<20	<20	22	25	27	32	35	37	41	44	46	49	
1 6	620x620	V _k	[m/s]					1,4	1,7	1,9	2,2	2,5	2,8	3,3	3,9	4,2	5	5,6	6,3	7	
	(0,1)	Δp_t	[Pa]					3	4	6	7	9	12	17	23	26	37	46	58	72	
- ⊢			[Pa]					5	8	10	13	17	21	30	41	47	67	83	>100	>100	
		L _{WA}	[dB(A)]						<20	<20	<20	21	23	27	31	33	37	39	42	44	47
	670x670	V_k	[m/s]						1,4	1,6	1,9	2,1	2,3	2,8	3,2	3,5	4,2	4,6	5,2	5,8	6,5
	(0,12)	Δp_t	[Pa]						3	4	5	7	8	12	16	18	27	33	42	51	64
-			[Pa]						5	7	9	12	15	21	29	33	48	59	74	92	>100
l .		L _{WA}	[dB(A)]			<20	<20	<20	22	26	30	34	37	42	46	48					
	595x295	V _k	[m/s]			2,4	2,7	3	3,6	4,2	4,8	5,4	6	7,2	8,4	9					
	(0,046)		[Pa]			6	8	10	14	19	25	32	40	57	78	89					
<u> </u>			[Pa]			17	22	27	38	52	68	86	>100	>100	>100	>100					
		L _{WA}	[dB(A)]									<20	<20	21	26	28	33	36	39	43	46
	595x595	V_k	[m/s]									2,2	2,4	2,9	3,4	3,6	4,3	4,8	5,4	6	6,7
4	(0,116)	Δp_t	[Pa]									5	6	9	12	14	21	25	32	40	50
ا ن			[Pa]									14	18	25	35	40	57	71	90	>100	>100
AFC-14		L _{WA}	[dB(A)]									<20	<20	<20	23	25	31	34	37	40	44
6	620x620	V_k	[m/s]									2	2,2	2,6	3,1	3,3	3,9	4,4	4,9	5,5	6,1
- 1	(0,127)	Δp_t	[Pa]									4	5	8	10	12	17	21	27	33	41
- -			[Pa]									12	15	21	29	33	47	59	74	91	>100
		L_{WA}	[dB(A)]										<20	<20	<20	21	27	30	33	36	40
	670x670	V _k	[m/s]										1,8	2,2	2,5	2,7	3,3	3,6	4,1	4,5	5,1
- 1	(0,153)	Δp_t	[Pa]										4	5	7	8	12	15	18	23	29
		*∆p _t F	[Pa]										10	15	20	23	33	41	52	64	80

Die Daten sind gültig für:

- Abluft

HINWEIS!

Druckverlustwerte in Tabelle für AFC mit oder ohne Filter.

Terminologie:

- A_k = effektiver freier Querschnitt v_k = effektive Einströmgeschwindigkeit Δp_t F= Druckverlust mit Filter Δp_t = Druckverlust ohne Filter

- L_{WA}^{T} = Schallleistungspegel

AFC

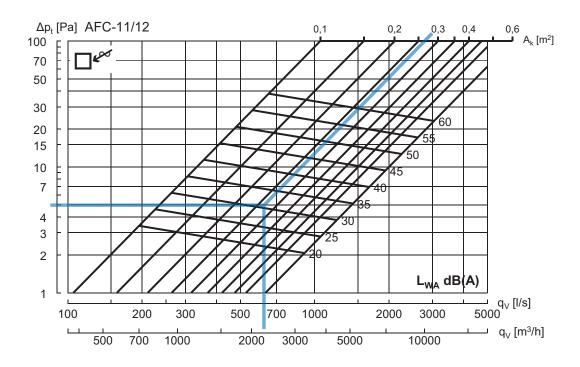
Technische Daten

Kapazität

Volumenstrom $q_{_{\!\scriptscriptstyle V}}$ [l/s] und [m³/h], Druckverlust $\Delta p_{_{\! t}}$ [Pa] und Schallleistungspegel $L_{_{\!W\!A}}$ [dB(A)] für das angegebene Beispiel sind dem Diagramm auf der nächsten Seite zu entnehmen.

Frequenzabhängiger Schallleistungspegel

Der Schallleistungspegel im Frequenzbereich ist definiert als


$$L_{Wf} = L_{WA} + K_{ok}$$
.

 $\label{eq:continuous} \mbox{Die K-Werte}_{\mbox{\tiny ok}} \mbox{ sind in der nachfolgenden Tabelle aufgeführt.}$

		Mittelfrequenz Hz									
	63	125	250	500	1K	2K	4K	8K			
Abluft	2	9	3	-4	7	-12	-20	-22			

Technische Daten

Beispiel: AFC-11

Gittergröße (LxH): 595x595 mm Freier Querschnitt A,: 0,257 [m²] 2200 m³/h (611 l/s) Volumenstrom q,:

Ergebnis:

Schallleistungspegel L_{WA} : ~ 31 dB(A)

Druckverlust Δp_{t} : ~ 5 [pa] (ohne Filter)

Benutzen Sie die Schnellauswahltabelle, um *Δp,F, (Druckverlustwerte mit Filter) zu ermitteln.

Die Daten sind gültig für:

- Abluft (Filter nicht inbegriffen)

Gitter sind auch im Online-Kalkulations-Tool von Lindab auf www.lindQST.com verfügbar.

Die meisten von uns verbringen den Großteil ihrer Zeit in Innenräumen. Das Innenraumklima ist entscheidend dafür, wie wir uns fühlen, wie produktiv wir sind und ob wir gesund bleiben.

Wir bei Lindab haben uns deshalb zum vorrangigen Ziel gesetzt, zu einem Raumklima beizutragen, das das Leben der Menschen verbessert. Dafür entwickeln wir energieeffiziente Lüftungslösungen und langlebige Bauprodukte. Wir wollen auch zu einem besseren Klima für unseren Planeten beitragen, indem wir auf eine Weise arbeiten, die sowohl für die Menschen als auch die Umwelt nachhaltig ist.

Lindab | Für ein besserees Klima

